Beating Waves Experiment II (BWXII)

Russell Burton

Outline

- * Define problem
- * Show experimental setup
- * Discuss upgrades

Big Picture

- * Efficient ES wave heating
- * Applications
 - * Plasma thrusters
 - * Efficiency is CRUCIAL

Electrostatic Wave Heating

- * When $f_{es} = f_{ion}$ energy transfer occurs
 - * Landau dampening
- $* f_{ion} < f_{es}$ ion gains energy
- $* f_{ion} > f_{es}$ ion loses energy
- * Take advantage of velocity distribution

Beating Waves

- * Beat 2 ES waves $f_{es1} - f_{es2} = n(f_{ion})$
- * More efficient at high energies (?)
 - * Ben Jorns' Thesis
 - * Not (yet) experimentally verified

Part II: Experimental Setup

Photo courtesy of EPPDyL

Laser Induced Florescence (LIF)

- * Measures T_{ion}
- * Operation:
 - * Send in laser light
 - Emitted photon is Doppler shifted
 - * Analyze frequency intensity
 - * Infer ion temperature

Langmuir Probes

- * Measures T_e and electron density
- * Operation:
 - * Applies voltage to plasma
 - * Measure/plot V against I
 - * Extract T_e, electron density

Part III: Upgrades

* Recall: testing high energy levels

LIF Upgrade

- * Parallel and perpendicular temperatures
 - * Motivation:
 - * Gauge anisotropic temperature
- * But Zeeman Splitting
 - * Broadens spectral lines
 - * Jumbles temperatures data
 - * Fix with circularly polarized light

Langmuir Probe Upgrade

- * Issue with single probe:
 - * RF interference
 - * Draws current from plasma
- * Solution: double probe
 - * Measures current across two tips
 - * Does not depend on floating potential

Beating Wave Antenna

Beating Wave Antenna

- * Maximize efficiency of radiated energy
- * Update old design
 - * Was for planar waves
 - * Test theory
- * Use square Helmholtz design

Antenna Comparison

- * Examine complex impedance
 - * No vessel, no live tests
- $* Re{Z}_{square} < Re{Z}_{plane}$
 - * Less energy into heat
- * Reactance_{square} > Reactance_{plane}
 - * Stronger B fields launched

Caveats

- * Different wave structure launched
- * HELIX group had helicon plasma
- * Will be tested this year

Works Cited

- * Jorns, Benjamin. "Plasma Heating with Beating Electrostatic Waves." Diss. Princeton University, 2012. Print.
- * Kline, John L. "Resonant Ion Heating in a Helicon Plasma." Thesis. West Virginia University, 1998. Print.
- * Kline, John L., E. E. Scime, P. A. Keiter, M. M. Balkey, and R. F. Boivin. "Ion Heating in the HELIX Helicon Plasma Source." *Physics of Plasmas* 6.12 (1999): n. pag. *Aip.org*. American Institute of Physics, 26 Aug. 1999. Web. 30 Sept. 2013. http://pop.aip.org/resource/1/phpaen/v6/i12/p4767_s1.
- * Owens, D.K. "Lecture IV: Langmuir Probes"